top of page

Purdue University: Purdue researchers show common bacterial assay is unreliable

As food recalls become more prevalent, families are tossing more lettuce and deli meat into the trash. This food waste is a requirement to keep people safe. But what if there’s a chance the tests determining bacterial content are unreliable, leading to false positives—creating more food recalls and fear than necessary?


To detect contamination on food or infections in animals, scientists use tests that look for genetic material, like DNA. These have revolutionized diagnostics and risk-assessment tools, but they cannot tell whether that DNA came from living or dead bacteria. 


“When you get a sample from the environment, it has a mix of living and dead cells,” Simerdeep Kaur explained. “So, a positive result could mean that the environment is currently contaminated, or maybe there was a past contamination that is no longer there but the DNA survived—DNA is a very stable molecule and can stay in the environment for days or even years.”


Kaur, a PhD student in Associate Professor Mohit Verma’s agricultural and biological engineering lab, recently published a paper about how propidium monoazide assays (PMA)—the solution many labs have used to differentiate between living and dead cells—are currently inaccurate but could be improved upon for the future. 


“We were surprised by the results because the PMA-based method has been used for years and people have found conflicting results, but nobody made the claim that we did,” Verma said.


Theoretically, the orange-colored PMA dye binds to DNA and blocks it from being amplified. This should only occur in dead cells that have degraded, since the dye struggles to pass through intact cell membranes. 


With PMA, only the DNA from living bacteria is amplified. When scientists run polymerase chain reactions (PCR)—or specifically the loop-mediated isothermal amplification (LAMP) in Verma’s lab—the living bacteria’s DNA multiplies enough in the sample to be tested while the dead bacteria’s DNA is suppressed. This should reduce false positives.


3rd Floor, 86-90 Paul Street, London, England, EC2A 4NE

Company number 15971529

GLOBAL RESEARCH PARTNERSHIPS LTD

bottom of page